Centre for Theoretical Physics Nijenborgh 4 9747 AG Groningen

TENTAMEN GENERAL RELATIVITY

tuesday, 23-01-2007, room 5111-0080, 9.00-12.00

Indicate at the first page clearly your name, address, date of birth, year of arrival and at every other page your name.

Question 1

Consider a Riemannian manifold with a covariantly constant metric $g_{ab}(x)$ and Christoffel symbols $\Gamma_{ab}^c(x) = \Gamma_{ba}^c(x)$.

- (1.1) Give the definition of the covariant derivative $\nabla_a S$ of a scalar S, the covariant derivative $\nabla_a V_b$ of a covariant vector V_b and the covariant derivative $\nabla_a T_{bc}^d$ of a tensor T_{bc}^d .
- (1.2) The covariant derivative of the metric g_{ab} is zero:

$$\nabla_c g_{ab}(x) = 0. (1)$$

Use this fact to derive an expression for the Christoffel symbol Γ_{ab}^c in terms of the metric and the derivative of the metric.

(1.3) Consider the metric of a 2–sphere S^2 with coordinates (r, ϕ) :

$$ds^{2} = \frac{4}{(1+r^{2})^{2}}(dr^{2} + r^{2}d\phi^{2}).$$
 (2)

One finds that the non-zero Christoffel symbols corresponding to the metric given in (2) are given by

$$\Gamma_{rr}^{r} = \frac{-2r}{1+r^{2}}, \qquad \Gamma_{\phi\phi}^{r} = \frac{-r(1-r^{2})}{1+r^{2}}, \qquad \Gamma_{r\phi}^{\phi} = \frac{1-r^{2}}{r(1+r^{2})}.$$
(3)

Calculate the nonzero components of the Riemann tensor

$$R^{c}_{dab} = \partial_{a}\Gamma^{c}_{db} - \partial_{b}\Gamma^{c}_{da} + \Gamma^{c}_{ea}\Gamma^{e}_{db} - \Gamma^{c}_{eb}\Gamma^{e}_{da}. \tag{4}$$

(1.4) Show that the sphere S^2 is a maximally symmetric space, i.e.

$$R_{abcd} \propto (g_{ac}g_{bd} - g_{ad}g_{bc}). \tag{5}$$

Question 2

Consider the Schwarzschild metric (we take c = 1)

$$ds^{2} = \left(1 - \frac{2m}{r}\right)dt^{2} - \left(1 - \frac{2m}{r}\right)^{-1}dr^{2} - r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2}). \tag{6}$$

(2.1) Show that the Euler-Lagrange equations that follow from the Lagrangian

$$L = \frac{1}{2}\dot{x}^a \dot{x}^b g_{ab}(x) \tag{7}$$

are given by the geodesic equations

$$\ddot{x}^a + \Gamma^a_{bc} \dot{x}^b \dot{x}^c = 0. \tag{8}$$

The dot \cdot indicates differentation with respect to the parameter s of the geodesic.

(2.2) Show that for constant r and $\theta = \pi/2$ the Schwarzschild metric (6) leads to the following geodesic equations

$$(1 - \frac{2m}{r})\dot{t} = k, (9)$$

$$r^2\phi = h, (10)$$

$$r^{2}\dot{\phi} = h, \qquad (10)$$

$$\frac{m}{r^{2}}(\dot{t})^{2} - r(\dot{\phi})^{2} = 0, \qquad (11)$$

with k and h constant.

(2.3) A light-ray follows a geodesic around a Schwarzschild black hole for constant $r = r_0$ and $\theta = \pi/2$. Determine the value of r_0 .

Observer A finds himself in free fall in an orbit of constant radius $r_0 = 4m$. The orbit is in the plane $\theta = \pi/2$.

(2.4) Calculate the coordinate time Δt_A that observer A needs for one revolution.

Question 3

The Robertson-Walker metric for k = 1, 0, -1 can be written in the form (we take c = 1)

$$ds^{2} = dt^{2} - R^{2}(t) \left\{ \frac{dr^{2}}{1 - kr^{2}} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2}) \right\}.$$
 (12)

For the energy-momentum tensor of a perfect fluid the Einstein equations lead to the following relations between the function R(t), the mass density $\rho(t)$ and the pressure p(t):

$$\frac{(\dot{R})^2 + k}{R^2} = \frac{1}{3}\kappa\rho, \qquad (13)$$

$$\dot{\rho} + 3(p+\rho)\frac{\dot{R}}{R} = 0.$$
 (14)

The dot indicates a differentiation with respect to t and $\kappa = 8\pi G$ (G is Newton's constant).

Consider first the case of a flat universe with non-relativistic matter, i.e. k = 0 and p = 0.

- (3.1) Show that ρR^3 is constant and that $\dot{R}^2 = A^2/R$ for some constant A. Determine this constant.
- (3.2) Take as boundary condition that R = 0 at t = 0. Determine R as a function of t. Give the graph of the function R(t).

We consider for the remaining part of this question the situation of a closed universe with ultra-relativistic matter, i.e. k=1 and $p=\frac{1}{3}\rho$.

- (3.3) Show that ρR^4 is constant and that $\dot{R}^2 + 1 = B^2/R^2$ for some constant B. Determine this constant.
- (3.4) We take as boundary condition that R = 0 at t = 0. Show that R as a function of t is given by

$$R(t) = \sqrt{2Bt - t^2} \,. \tag{15}$$

Give the graph of the function R(t). Let ρ_0 and R_0 be the values of the functions ρ and R at the present time $t=t_0$. Show that this universe has a finite lifetime and determine this lifetime in terms of ρ_0 , R_0 and Newton's constant G.