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Question 1

Consider a Riemannian manifold with a covariantly constant metric gg(x)
and Christoffel symbols ¢, (z) = I'f, (x).

(1.1) Give the definition of the covariant derivative V,.5 of a scalar S, the
covariant derivative V,V; of a covariant vector V}, and the covariant derivative
VT2 of a tensor TZ.

{1.2) The covariant derivative of the metric g, is zero:

vcgab(z) =0. (1)

Use this fact to derive an expression for the Christoffel symbol I'}, in terms
of the metric and the derivative of the metric.

(1.3) Consider the metric of a 2-sphere $* with coordinates (r, ¢):
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One hinds that the non-zero Christoffel symbols corresponding to the metric
given in (2) are given by
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Calculate the nonzero components of the Riemann tensor
Rga = aﬂrfib - 851—‘3!& + Fga 3& - szriia g (4)

(1.4) Show that the sphere §? is a maximally symmetric space, i.e.

Rabcd & (gacgbd - gadgbc) . (5)

Question 2

Consider the Schwarzschild metric (we take ¢ = 1)

ds? = (1 — Eﬂl)dtz —(1- 2?)’1037"2 — r2(d#? + sin®0d?) . (6)
T

(2.1) Show that the Euler-Lagrange equations that follow from the La-
grangian

l.,.
L= Erawbgab(m) (7)
are given by the geodesic equations

i+ Tpabt = 0. (8)

The dot - indicates differentation with respect to the parameter s of the
geodesic.

(2.2) Show that for constant r and # = /2 the Schwarzschild metric (6)
leads to the following geodesic equations

(-2 = ¥, ©
r?¢ = h, (10)
S0 =19 = 0, (11)

with & and h constant.



(2.3) A light-ray follows a geodesic around a Schwarzschild black hole for
constant r = ry and 6 = w/2. Determine the value of 7.

Observer A finds himself in free fall in an orbit of constant radius ry = 4m.
The orbit is in the plane 8 = 7/2.

(2.4) Calculate the coordinate time At,4 that observer A needs for one rev-
olution.

Question 3

The Robertson-Walker metric for kK = 1,0, —1 can be written in the form (we
take ¢ = 1)

dr?
1— kr2
For the energy-momentum tensor of a perfect fluid the Einstein equations
lead to the following relations between the function R(t), the mass density
p(t) and the pressure p(t):

ds® = dt* — R*(t){ + r(d@? + sin®8de?)} . (12}

R +k

L)qu— = 3%p, (13)
, R
p3ptpy = 0. (14)

The dot indicates a differentiation with respect to ¢t and « = 87G (G is
Newton’s constant).

Comnsider first the case of a flat universe with non-relativistic matter, i.e. k =0
and p = 0.

(3.1} Show that pR? is constant and that R? = A2/R for some constant A.
Determine this constant.

(3.2) Take as boundary condition that R = 0 at { = 0. Determine R as a
function of . Give the graph of the function R(t).
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We consider for the remaining part of this question the situation of a closed
universe with ultra-relativistic matter, i.e. k=1 and p= % o-

(3.3) Show that pR* is constant and that R*+ 1 = B?/R? for some constant
B. Determine this constant.

(3.4) We take as boundary condition that R = 0 at t = 0. Show that R as
a function of ¢ is given by

R(t) = V2Bt — 2. (15)

Give the graph of the function R(t). Let py and Ry be the values of the
functions p and R at the present time ¢t = t;. Show that this universe has
a finite lifetime and determine this lifetime in terms of py, By and Newton’s
constant G.



